齐世文 1,2顾冬冬 1,2,*张晗 1,2戴冬华 1,2
作者单位
摘要
1 南京航空航天大学材料科学与技术学院,江苏 南京 210016
2 江苏省高性能构件激光增材制造工程研究中心,江苏 南京 210016
激光增材制造稀土改性高强铝合金因具备轻质高强、复杂构件一体化成形等优势,在航空航天领域具有广阔的应用前景。围绕激光增材制造成形工艺优化、冶金缺陷抑制、力学性能提升及复杂构件形性调控等的研究是近年来的研究难点。本团队开展了激光粉末床熔融成形稀土改性高强铝合金Al-4.2Mg-0.4Sc-0.2Zr的激光工艺优化研究,基于试验表征与数值模拟相结合的方法,揭示了激光扫描速度对成形试件表面质量、内部冶金缺陷、熔池传热传质行为及纳米析出相分布的影响机制。结果显示:当激光功率为300 W、激光扫描速度为800 mm/s,并辅以325 ℃/4 h的时效热处理时,成形试件的致密度最优,为99.5%,抗拉强度为512.4 MPa,延伸率为13.3%。基于优化工艺参数对航空领域两类典型的复杂构件开展了成形试验研究,成形试件的最长外形尺寸为570 mm,表面粗糙度Ra≤7.3 μm,尺寸精度可达0.1 mm/100 mm。
激光技术 增材制造 激光粉末床熔融 高强铝合金 工艺调控 力学性能 
中国激光
2024, 51(10): 1002317
作者单位
摘要
西安交通大学生命科学与技术学院,生物医学光子学与传感研究所,生物医学信息工程教育部重点实验室,陕西 西安 710049
结肠癌已成为我国主要癌症发病种类之一,传统的治疗方法难以抑制其转移和复发。免疫疗法虽然可以通过机体免疫系统清除肿瘤组织,但肿瘤组织中的免疫抑制微环境,往往会导致效果不及预期。光学疗法,包括光热疗法(PTT)和光动力疗法(PDT),不仅可以直接诱导肿瘤细胞凋亡和坏死,还能改善肿瘤组织中的免疫抑制环境,从而促进免疫细胞在肿瘤组织中的浸润和活性,提高免疫治疗效果。笔者创新性地利用吲哚氰绿(ICG)介导的光学疗法和天然免疫活性分子羽扇豆醇(Lupeol)对自然杀伤(NK)细胞免疫活性的提升作用实现光-免疫协同激活作用和抗肿瘤效果,通过纳米脂质体将ICG和羽扇豆醇整合得到Lip-Lupeol & ICG,并将其用于结肠癌细胞灭活研究。结果显示:Lip-Lupeol & ICG在通过两次间隔激光照射后可实现PTT和PDT的两次治疗作用,可将结肠癌细胞活性抑制至43.4%;与此同时,包裹的羽扇豆醇释放后可与光学疗法协同激活NK细胞活性,将结肠癌细胞活性进一步抑制至16.7%,为临床结肠癌治疗提供了一种新思路。
医用光学 吲哚氰绿 羽扇豆醇 光动力疗法 光热力疗法 NK细胞免疫疗法 
中国激光
2024, 51(3): 0307202
吴晓维 1张涵 1,2曾彪 1,2明辰 1,2孙宜阳 1,2,*
作者单位
摘要
1 1.中国科学院 上海硅酸盐研究所, 上海 201899
2 2.中国科学院大学 材料科学与光电工程中心, 北京 100049
在卤族钙钛矿材料的缺陷研究中, 密度泛函理论计算发挥着重要作用。传统的半局域泛函(如PBE)虽然能够得到与实验接近的禁带宽度, 但是已有研究表明其不能准确描述材料的带边位置。采用更准确的杂化泛函, 结合自旋轨道耦合(SOC)效应与充分的结构优化开展缺陷研究十分必要。可以选择两种杂化泛函, 即屏蔽的杂化泛函HSE和非屏蔽的杂化泛函PBE0。本研究以正交相CsPbI3为例, 系统比较了两种方法在缺陷性质计算上的差异。计算结果表明, 对于体相性质, 两种杂化泛函并无明显的差别。但是, 对于缺陷性质, 两种泛函出现定性的差别。HSE计算中预测的浅能级缺陷, 在PBE0计算中大部分变为深能级缺陷, 且缺陷转变能级和Kohn-Sham能级均出现定性差别。上述差别的本质在于, Hartree-Fock交换势具有长程作用特征, 因而普通的杂化泛函如PBE0在计算量允许的超胞尺寸上无法得到收敛的结果, 而HSE对上述交换势具有屏蔽作用, 可采用相对小尺寸的超胞得到收敛的缺陷能级。本研究结果表明, 尽管HSE杂化泛函需要较大的Hartree-Fock混合参数(约0.43), 其仍是准确计算卤族钙钛矿缺陷性质的有效方法。
钙钛矿 本征缺陷 CsPbI3 杂化泛函 第一性原理计算 perovskites intrinsic defect CsPbI3 hybrid functional first-principles calculation 
无机材料学报
2023, 38(9): 1110
作者单位
摘要
1 南京航空航天大学南京 211000
2 南京航空航天大学, 南京 211000
针对模型未知的直升机机动飞行过程中存在的输入时滞及饱和问题, 提出了一种无模型增量自适应最优控制方案。首先, 利用增量非线性技术得到了系统的近似时变模型, 并通过递推最小二乘估计(RLS)对相关矩阵参数进行辨识; 其次, 采用泛函性能指标处理输入时滞及饱和问题, 利用增量自适应动态规划(IADP)设计近似最优跟踪控制律; 最后, 通过神经网络近似基于实时状态和延时输入的时间差分误差(TDE)函数, 并运用其瞬时积分得到评价网络权值更新率。通过Lyapunov函数分析证明了闭环系统的稳定性。直升机机动飞行速度跟踪控制仿真验证了该方法的有效性。
直升机控制 输入时滞 输入饱和 增量自适应动态规划(IADP) helicopter control input delay input saturation Incremental Adaptive Dynamic Programming (IADP) 
电光与控制
2023, 30(11):
代硕 1夏清 1张涵 1何厅厅 2[ ... ]李冲 3
作者单位
摘要
1 长沙理工大学交通运输工程学院, 湖南 长沙 410114
2 浙江大学公共管理学院, 浙江 杭州 310058
3 中工国际工程股份有限公司, 北京 100080
潮间带潮滩由于受到潮汐周期性淹没的影响导致难以精准确定其空间分布, 因此, 迫切需要利用遥感技术了解潮滩受潮汐淹没的光谱变化特征, 构建潮滩提取指数, 对潮滩的精准解译提供方法及基础数据支持。 基于多时相Sentinel-2多光谱影像, 通过分析高、 低潮影像上不同地物的光谱反射率特征差异, 优选出能反映潮滩特征的波段, 构建一种海岸带潮滩提取指数。 在此基础上, 从三方面对已构建潮滩指数的可行性进行论证: (1)将潮滩提取指数应用到3个不同潮滩类型的研究区, 研究了潮滩指数的可分离性及对不同潮滩类型区域的适用性, 研究结果表明: 与其他地类相比, 构建的潮滩提取指数对潮滩具有较好的可分离性, 并且适用于砂质、 泥质不同种类的潮滩; (2)研究了潮滩提取指数对不同分类方法(包括最小距离法、 极大似然法、 支持向量机)的适用性, 研究表明: 采用所选取的三种分类方法进行潮滩解译时, 其总体精度均大于93%, Kappa系数均大于0.85, 潮滩提取指数对不同的分类方法均具有普适性, 且可有效提高潮滩的解译精准度; (3)研究了潮滩提取指数对不同数据源的适宜性, 采用“珠海一号”数据与本文Sentinel-2多光谱数据解译潮滩并对比结果, 研究显示: 构建的潮滩提取指数适用于不同数据源, 且取得了较好的潮滩分类精度。 该方法提高了海岸带潮滩遥感提取的准确度, 丰富了潮滩遥感解译理论, 对海岸带潮滩生态系统的科学管理与保护提供了理论指导与意义。
Sentinel-2多光谱影像 潮滩光谱反射率 光谱变化特征 潮滩提取指数 珠海一号 Sentinel-2 multispectral images Tidal flat spectral signatures Spectral variation characteristics Tidal flat recognition index Zhuhai No.1 Orbita Hyperspectral Satellite (OHS) 
光谱学与光谱分析
2023, 43(6): 1888
作者单位
摘要
河南中医药大学医学院郑州 450046
探讨不同疗程的电针干预对放射性脑损伤小鼠学习记忆的影响及其作用机制。60只4周龄雄性C57/BL6J小鼠随机分为空白组、模型组、电针组1(7 d)、电针组2(14 d)、电针组3(21 d)、电针组4(28 d)。除空白组外,其余各组给予X射线(8 Gy,2 min)照射,构建放射性脑损伤模型,电针组给予针刺“百会”、“风府”及双侧“肾俞”穴,并依据分组分别干预7、14、21、28 d。电针结束后,Y迷宫检测各组小鼠学习记忆功能,苏木精-伊红染色法、透射电镜观察海马齿状回(DG)神经元形态、突触超微结构,Western blot检测Notch信号通路Notch 1、Hes 1、ASCL 1的蛋白表达。结果显示:与空白组相比,模型组小鼠学习记忆功能显著下降(p<0.01);海马DG区神经元数量减少,排列紊乱;神经元突触前膜突触囊泡数量减少,突触界面率减小、突触后致密区(PSD)厚度降低、突触间隙增大均有显著差异(p<0.01);与模型组相比,电针各组小鼠的学习记忆功能均显著提高(p<0.05,p<0.01);电针组小鼠DG区神经元数量增多,排列整齐;各组小鼠DG区突触界面率均有显著改善(p<0.01),电针组2、3和4小鼠PSD厚度显著增加(p<0.01),电针组2、3和4的突触间隙显著减小(p<0.01)。与空白组相比,模型组小鼠Notch 1蛋白表达显著升高(p<0.05),Hes 1蛋白表达显著升高(p<0.01),ASCL 1蛋白表达显著降低(p<0.01);与模型组相比,电针组2、3和4的Notch 1、Hes 1蛋白表达显著降低(p<0.05,p<0.01),电针组3和4的ASCL 1蛋白表达显著升高(p<0.05,p<0.01)。提示不同疗程的电针可以改善放射线照射对小鼠学习记忆功能造成的损伤,该作用与改善DG区突触超微结构及调控Notch信号通路相关蛋白的表达有关。
放射性脑损伤 电针 学习记忆 Notch信号通路 Radiation-induced brain injury Electropuncture Learning and memory Notch signaling pathway 
辐射研究与辐射工艺学报
2023, 41(5): 050301
Author Affiliations
Abstract
1 National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
2 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
Cascaded holography coupled with the secret-sharing scheme has recently gained considerable attention due to its enhanced information processing and encryption capabilities. Here, we propose a new holographic iterative algorithm and present the implementation of cascaded liquid crystal (LC) holography for optical encryption. Each LC layer acts as the secret key and can generate a distinct holographic image. By cascading two LC elements, a new holographic image is formed. Additionally, we showcase the dynamic optical encryption achieved by electrically switching LCs with combined electric keys. This work may offer promising applications in optical cryptography, all-optical computing, and data storage.
liquid crystals holography optical encryption 
Chinese Optics Letters
2023, 21(12): 120003
作者单位
摘要
河南大学 材料学院,教育部特种功能材料重点实验室,河南 开封 475004
空穴注入效率低是制约蓝色量子点发光二极管(QLEDs)性能的关键因素。通过提升PEDOT∶PSS的电导率来增加器件的空穴注入效率是提升蓝色QLEDs性能的重要方向。由于二维材料碳化钛(Ti3C2Tx)具有较高的导电性、丰富的表面官能团及良好的亲水性等优点,有望通过掺杂提高PEDOT∶PSS的电导率。本文采用HCl/LiF刻蚀法制备了单层Ti3C2Tx纳米片,并将其掺杂到PEDOT∶PSS中制备了蓝色QLEDs器件。结果表明,当Ti3C2Tx的掺杂量为0.1%时,器件的最大外量子效率和电流效率分别达到15.2%和14.42 cd·A-1,与参比器件的9.09%和7.68 cd·A-1相比,分别提高了67%和87%。Ti3C2Tx纳米片对蓝色QLEDs器件性能提升有两个作用,一方面诱导PEDOT的构型从苯态到喹啉态转变,形成紧密堆积的大尺寸PEDOT纳米晶,并将这些导电纳米晶连接起来,构筑了新的电荷传输通道,提高了复合层的电导率;另一方面,通过掺杂实现了PEDOT∶PSS功函数的调节,提升了蓝色QLEDs器件的空穴注入效率。
Ti3C2Tx纳米片 蓝色量子点发光二极管 空穴注入 能级调控 Ti3C2Tx nanosheets blue light-emitting diode hole injection energy level regulation 
发光学报
2023, 44(7): 1315
Author Affiliations
Abstract
1 College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
2 School of Physics, Nanjing University, Nanjing 210023, China
3 Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
4 Hefei National Laboratory, Hefei 230088, China
5 Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
The sensitivity of optical measurement is ultimately constrained by the shot noise to the standard quantum limit. It has become a common concept that beating this limit requires quantum resources. A deep-learning neural network free of quantum principle has the capability of removing classical noise from images, but it is unclear in reducing quantum noise. In a coincidence-imaging experiment, we show that quantum-resource-free deep learning can be exploited to surpass the standard quantum limit via the photon-number-dependent nonlinear feedback during training. Using an effective classical light with photon flux of about 9×104 photons per second, our deep-learning-based scheme achieves a 14 dB improvement in signal-to-noise ratio with respect to the standard quantum limit.
standard quantum limit machine learning optical imaging 
Chinese Optics Letters
2023, 21(8): 082701
作者单位
摘要
深圳大学物理与光电工程学院,射频异质异构集成全国重点研究实验室,光电子器件与系统教育部/广东省重点实验室,广东 深圳 518060
面向生物粒子操控方法的研究,在生物医学和生命科学等领域具有重要意义。光镊操控具有无接触与高精度的特点,已被广泛应用于多个领域的研究中。然而,传统光镊的光热效应以及衍射极限都制约着光镊在生物医学领域的更广泛应用和发展。近十年来,研究者们将光热效应化劣势为优势,利用光与热的耦合效应实现了多种粒子的精确捕获及操控,即光致温度场光镊(OTFT)。由于此种新型光镊对光能的利用率极高,能量密度低于传统光镊近3个数量级,并可实现颗粒的大范围操控,极大地拓展了光镊可操控粒子的种类,已经成为纳米技术以及生命科学领域的重要研究工具。温度场光镊仍面临诸多问题,例如对于颗粒界面调控的依赖性以及三维捕获受限等,尤其是在生物光子学的研究中,还需要进一步发展和优化。本文对光致温度场光镊操控基本原理及其在生物医学中的应用两个方面进行了系统阐述,并对其今后的发展与挑战进行了展望。
光镊 光热镊 光流控 光热效应 微流控 生物传感器 
光学学报
2023, 43(14): 1400001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!